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Meta-models proved to be a very efficient strategy for optimization of expensive black-box models, e.g. Finite Element simulation for 

electromagnetic devices. It enables to reduce the computational burden for optimization purposes. Kriging is a popular method to 

build meta-model. Its statistical properties were firstly used in efficient global optimization for unconstrained problems. Afterwards 

many extensions were introduced in the literature to deal with constrained optimization. This paper presents a comparative study of 

some infill criteria for constraints handling and a new strategy for parallelization of the expensive computations of models.  

 
Index Terms—Constrained optimization, Expensive simulation, Kriging, Parallelization strategy. 

 

I. INTRODUCTION 

ETA-MODELS are used in many fields, mainly to replace 

expensive black-box models. In an optimization problem 

the objective function and/or constraints are not always 

cheaply available data, thus these surrogate models aim to 

give a model able to approximate the expensive black-box 

models from a limited number of solutions. Optimization 

using meta-models were first introduced in [1] to tackle 

unconstrained optimization. Its main advantage is the 

reduction of the number of calls to the expensive model. 

However, for problem with high number of parameters the 

number of evaluations arises exponentially (curse of 

dimensionality). Thus, the purpose of this paper is to compare 

methods to handle constraints and propose a new strategy for 

parallelization, which enables to run several evaluations at 

each iteration. A brief review of meta-model based 

optimization and infill criteria for constrained optimization is 

presented. Then, the parallelization strategy is presented and 

tested on an analytical model. 

II. META-MODEL BASED OPTIMIZATION 

Meta-model based optimization can be as in Fig. 1. The first 

step aims to determine initial set of parameter values (initial 

design) using a design of experiments, e.g. Latin Hypercube 

Sampling (LHS). The full (expensive) model is solved for 

each set of parameters. Afterwards a meta-model is built based 

on the initial design and the output data. Kriging is well suited 

for building the meta-model due to its statistical properties. 

The most important part in the process is to find the infill 

point which improves the actual best solution and increases 

the meta-model precision. This point will be evaluated using 

the full model in the next iteration. In Fig. 1, the arrow that 

goes out and come back in to the same step means that a sub-

optimization problem is dealt with in that step. Finally some 

stopping criteria are evaluated to terminate the optimization. 

Kriging is an interpolation based on a regression term and a 

stochastic term. The stochastic term aims to eliminate the error 

due to regression and is constructed based on the location of 

the sampled points. Kriging is one of the interpolation 

methods that characterize the variance, or the precision, of the 

prediction. In [2] an exhaustive presentation and the 

implementation of kriging predictor are detailed. The 

developed toolbox is used in the numerical evaluation. 

 
Fig. 1.  Flowchart of kriging meta-model based optimization. 

III. INFILL CRITERIA 

The most famous infill criterion to deal with unconstrained 

optimization is Expected Improvement (EI) criterion, 

presented in [1]. This criterion enables a tradeoff between 

exploitation and exploration of the design space.  

Maximizing EI leads to the point with the highest 

probability of improvement, either by sampling toward the 

optimum or improving the approximation of the meta-model. 

There exist other infill criteria, they often reveal striking 

similarities, an exhaustive set of infill criteria was presented in 

[3] for unconstrained and constrained optimization. The 

probability of feasibility (PF) criterion is widely used for 

constrained optimization.  
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where ĝ and 
gŝ  are the expected value and the standard 

deviation of the kriging predictor for a constraint 0g . 

To sample point that improves the actual solution and 

respects constraints both EI and PF should be maximized. 

Table I summarizes the main formulations. 

The first formulation has a statistical derivation. It aims to 

sample points that maximize the expectation of improvement 
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and constraints satisfaction. However the product of EI and PF 

reveals high multimodality and algorithms often fail to find 

the global optimum. Thus, the second formulation was 

proposed to consider the infill criterion as bi-objective. The 

points chosen are the ones that maximize both EI and PF and 

belong to the Pareto front. For both formulations, one concern 

is that it impacts the search close to the constraints boundary, 

so if the optimum lies on the constraints boundary these infill 

criteria may fail to find it. The third formulation was proposed 

in [3] and considers the problem as a constrained one to 

reduce the multimodality of the infill criterion and to gain in 

precision of the solution. Ptol=0.95 was recommended but it 

has an effect on the precision. The authors’ opinion is that 

Ptol=0.5 seems more reasonable because PF=0.5 when 0ˆ g . 

In the case of many constraints, the first two formulations 

consider the global PF as the product of the probability of 

feasibility of each constraint. The third formulation considers 

each constraint independently and calculates their respective 

probabilities of feasibility, ending up with the same number of 

constraints as the original problem. A modified formulation 

aims to consider the product of the probabilities of feasibility, 

reducing the number of constraint to only one. 

As stopping criterion, the variation of EI for successive 

iterations is less than a specified threshold. 

TABLE I 

INFILL CRITERIA FOR CONSTRAINED OPTIMIZATION 

Formulation Infill point determination 

1 max
𝑑

𝐸𝐼(𝑑). 𝑃𝐹(𝑑) 

2 max
𝑑

(𝐸𝐼(𝑑), 𝑃𝐹(𝑑)) 

3 
max

𝑑
   𝐸𝐼(𝑑)           

𝑠. 𝑡.  𝑃𝐹(𝑑) ≥ 𝑃𝑡𝑜𝑙

 

IV. PARALLELIZATION STRATEGY 

In the sequential process, only one point is found by 

maximizing EI. The aim of the parallelization strategy is to 

find multiple promising points at each iteration to take 

advantage of and clusters by running distributed evaluations.  

In [4] the straightforward extension of EI from sequential to 

parallel was presented. As the infill criterion has not an 

analytic expression for more than two points, the authors 

propose its estimation through Monte Carlo simulation. In [5] 

a hybrid method was proposed. It adds artificially the point 

found at each iteration to a subset, evaluate it with the kriging 

predictor, and reconstruct the meta-model. Afterwards, the 

next point is found until reaching the number of required 

points. When the number of evaluated points increases, the 

construction of the meta-model become a time consuming step 

which penalize the whole process. 

The proposed method is based mainly on the multimodal 

behavior of EI and searches the points that maximize EI and 

exclude its vicinity to find another point. The process is 

repeated until the number of excluded points equals the 

number of required parallel evaluations. The exclusion area is 

defined by the distance from that point.  

V. ANALYTICAL TEST 

A comparison on an analytical problem from [6] is done. 10 

tests for each formulation were done with different initial 

designs of experiments generated by the LHS. Furthermore 

SQP algorithm with 10 start points uniformly random chosen 

from the space, is presented. The averages of the results are 

shown in Table II. The metrics used for comparison are the 

convergence rate (C.R.) that is the percentage of the 10 tests 

that converge to the known solution for less than 1% of the 

range of variable. dist is the Euclidean distance to the known 

solution for the tests that converged, evals is the mean number 

of evaluations of the exact model, and time is mean computing 

time. The table shows that SQP and the third formulation with 

Ptol=0.95 have the lowest convergence rate. The first and 

second formulations have good convergence rates but the 

number of evaluations is higher. Due to the multimodality of 

the problem, the algorithm often fails to find the global 

optimum. The modified third formulation shows the best 

results among the sequential formulations. 

For the parallelization strategy, three evaluations of the 

exact model at each iteration were done. The results show that 

the number of exact model evaluations has increased by 42%, 

however the time decreased by 52%. 

TABLE II 

COMPARISON OF OPTIMIZATION RESULTS 

Formulation C.R dist evals time (s) 

SQP 0.3 1.00e-6 31.5 0.13 
1 0.8 3.26e-2 47.7 57.24 

2 1 4.09e-2 55.3 66.36 

3 (Ptol=0.95)  0.4 3.47e-2 32.5 39.00 
3 (Ptol=0.5) 0.9 1.42e-4 37.4 44.88 

3 modified 1 1.27e-5 36.2 43.44 

Parallel 1 2.11e-5 52.5 21.00 

VI. CONCLUSION  

In this communication, we have developed a strategy of 

optimization based on kriging meta-model and the 

parallelization of the computations of the full model. The 

results obtained on an analytical example are promising. 

This strategy is currently assessed on the TEAM Workshop 

problem 22 with 8 variables and will be presented to the 

conference. 
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